加入收藏 | 设为首页 | 会员中心 | 我要投稿 东莞站长网 (https://www.0769zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

图卷积网络到底怎么做,这是一份极简的Numpy实现

发布时间:2019-02-23 06:13:34 所属栏目:经验 来源:机器之心编译
导读:由于图结构非常复杂且信息量很大,因此对于图的机器学习是一项艰巨的任务。本文介绍了如何使用图卷积网络(GCN)对图进行深度学习,GCN 是一种可直接作用于图并利用其结构信息的强大神经网络。 本文将介绍 GCN,并使用代码示例说明信息是如何通过 GCN 的隐藏

可以观察到,邻接矩阵中每一行的权重(值)都除以该行对应节点的度。我们接下来对变换后的邻接矩阵应用传播规则:

  1. In [11]: D**-1 * A * X 
  2. Out[11]: matrix([ 
  3.              [ 1. , -1. ], 
  4.              [ 2.5, -2.5], 
  5.              [ 0.5, -0.5], 
  6.              [ 2. , -2. ] 
  7.          ]) 

得到与相邻节点的特征均值对应的节点表征。这是因为(变换后)邻接矩阵的权重对应于相邻节点特征加权和的权重。大家可以自己动手验证这个结果。

整合

现在,我们将把自环和归一化技巧结合起来。此外,我们还将重新介绍之前为了简化讨论而省略的有关权重和激活函数的操作。

1. 添加权重

(编辑:东莞站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读